
Complementary bounds for dynamic polarizabilities

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1969 J. Phys. A: Gen. Phys. 2 295

(http://iopscience.iop.org/0022-3689/2/3/008)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 10:17

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/2/3
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  P H Y S .  A ( G E N .  PHYS.), 1969,  S E R .  2 ,  V O L .  2 .  P R I N T E D  I N  G R E A T  B R I T A I N  

Complementary bounds for dynamic polarizabilities 

P. D. ROBINSON 
Mathematics Department, York University 
MS. received 3rd January 1969 

Abstract. Complementary variational principles are developed for ground-state 
wave function corrections which are induced by frequency-dependent perturbations. 
These principles lead to upper and lower bounds for dynamic polarizabilities which 
are either measured at real frequencies less in magnitude than the first excitation 
energy, or measured at any imaginary frequencies. In  the latter case there is a 
choice of upper bounds, different forms being suited to small and large frequencies. 
Illustrative results are presented for the hydrogen atom, and reasonable accuracy is 
obtained with simple one-parameter trial functions. 

1. Introduction 

with the first-order correction 
I n  a recent paper (Robinson 1969), complementary variational principles associated 

(h-&)CD = (P- V)+, (1) 
to the ground-state wave equation 

(h  -%)#0 = 0 
were discussed. Here h is a Hamiltonian with orthonormal eigenfunctions {+n} and energy 
eigenvalues {e,], V is a perturbation and 

(3) 

The  principles led to complementary upper and lower bounds for the second-order energy 
correction 

the closeness of these bounds measuring the accuracy of approximations to the exact 
solution CD = 4 of (1). When 6 = eo the results refer to conventional Rayleigh- 
Schrodinger perurbation theory ; otherwise they refer to Brillouin-Wigner theory. 

In  the present paper these ideas are extended to yield complementary upper and lower 
bounds for dynamic polarizabilities at both real and imaginary frequencies. Accuracy of 
appropriate first-order wave functions can also be tested. Real frequencies can be dealt 
with by setting d = e o  + w in equation (l), but for imaginary frequencies the basic theory 
must be modified. Illustrative results are presented for the hydrogen atom, and reasonable 
accuracy is achieved with simple trial functions involving single multiplicative parameters. 

A knowledge of dynamic polarizabilities enables one to determine such quantities as 
refractive index when the frequencies are real (Chan and Dalgarno 1965) and van der 
Waals coefficients when the frequencies are imaginary (Mavroyannis and Stephen 1962). 

2. Basic theory 

lower bounds 

are available for the functional 

Following the theory of the earlier paper (Robinson 1969), complementary upper and 

G(@d 2 S(4) 2 J(TQ2) (5) 

S(4) = -qw (6) 
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associated with the exact solution @ = + of the equation 

(T+T+Q)@ = f. 
Here T is a linear operator, T‘ is its adjoint defined by 

(7 )  

J ( T + U ) @ d r  = 1 U(T@)dr (8) 

Q is a self-adjoint positive-definite operator with an inverse and f is a function of co- 
ordinates. The  expressions for the functionals G and J (which are stationary at s(+)) are 

G(@.,) = - 6 s  {-@.,(TtT+Q)@.,+2@,f}dr (9) 

J( TQ2) = G( @,) - 4 1 {f- (Tt  T +  Q)@,)Q -l{f- ( Tt  T +  Q)Q2} dr  . 
and 

(10) 

So far we have supposed that all functions are real. It is easy to adjust the functionals S, 
G and J to allow for complex @ andf provided that TtT and Q remain real. We replace 
@j by fr(@*f+ @f*), @,(TtT+ Q)@, by a.,*( TtT+ Q)@, and the first bracket in (10) by 
{f* - ( TtT+ Q)a2*). This can be seen by adding the functionals obtained for the real and 
imaginary parts of equation (7)  taken separately; alternatively the basic theory can be 
adapted using complex scalar products. However, the situation is more difficult if Q is 
complex, as we see below. 

3. Extension of theory for a complex operator 
I n  order to obtain complementary bounds for polarizabilities at imaginary frequencies, 

we need to consider a modification of the basic equation (7). The simplest suitable one 
is 

whereg is real and a and b are real constants. The  solution 0 = + of (11) is complex and 
the bounds ( 5 )  do not hold since a+ib  is not an acceptable choice for 9. 

(9-+9-+a+ib)@ =g ,  a > 0 (11) 

To make progress we consider the equation 

{ ( s t y  + a), + b2}0  = g, (0 real) (12) 

@ = ( Y t Y + a - i b ) O  (13) 

@* = ( F + F + a + i b ) O  (14) 

with solution 0 = 8. From (11) and (12) it follows that 

and 

It is possible to treat (12) as an example of (7); but this would provide bounds for jog dr ,  
which is not of interest. Instead we operate on (12) with ( F t F + a ) ,  obtaining 

{(9-+9- + a)3 + b2(9-’9- + a)}@ = (7’9- + u)g (16) 
and treat (16) as an example of (7)  with 

and 

This procedure yields bounds for the functional 

9(@) = -& [@(F t9 -+a )gdr  = -gSg(d t9 -+a )Bdr  = - 4  [ (C*++)gdr  (19) 
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from (15). These are 

where 
9(0,) 3 q q  2 $(TO,) 

9(01) = - 1 [ - O l ( F t F  + a ) { ( F t F  + a)2 + b2)01 + 2 ( ( F t F +  a)Ol}g] dr  (21) 
and 

$(TO,) = 9(0,) 

- + [g - ((9s + a)z + b2}02]( FtF + a)Q -I( FtF + a) 

x [ g - { ( Y t F + ~ ) ~ + b ~ ) 0 2 ]  dr. (22) 
If functions 
these expressions can be written in the alternative forms 

and Q2 are given in terms of O1 and O2 according to equations (13)-(15), 

B =  -q (4 ( YtF+  a)Q1 + (B1* + Q1)g} dr  (23 1 
and 

f =  B 

- 8 [ {g - ( FtF + a - ib)Q2*}( Ft + a)Q - l(FtY + a)(g - (FtY + a + ib)@,} d r  . 

The  upper bound 9 is independent of the way in which T and Q are chosen to 
satisfy (17), but the lower bound $will be maximized if Q is made as 'large' as possible. 
In principle we could choose for example 

(2.4) 

TIT = (FtF)3, Q = ~U(F~F)~+(~U~+~~)F'F+U(U~+~~) (25) 

TtT = F t F ( F t F + a ) 2 + b 2 ( Y - t F + . ) ,  Q = u(F 'T+u)~  (26) 

(27) 

TtT = F t F ( F t Y + a ) ( Y t F + 2 a ) ,  Q = ( a z + b 2 ) ( F t F + a )  (28) 

but then Q-I is clumsy so that the evaluation of (24) is not practicable. More sensible 
choices are 

leading to 
1 yI = 3- - /{g-(FtF+a-ib)@2*}{g-(3*F+a+ib)@2}dr 2a 

or 

leading to 

* (g-(FtF+a-ib)~2*)(FtY+a)(g-(F+Y+a+ib)@2}dr. 
2(a2 + b2) $11= g- 

(29 1 

F = T ,  Q = a ,  g = f, a r e a l .  (30) 

In the case b = 0, equation (11) is a direct example of (7) with 

Denoting the functionals for zero b by Yo ,  go, yo, it is evident from (6), (9), (lo), (19), 
(23) and (27) that 

Y +Yo, g --f go, $I -+Yo as b + O .  (31) 
Thus we expect $I to be a suitable lower bound when b is small. M'hen b is large, yII 
seems suitable by virtue of the factor (a2 + b2)-l .  

4. Dynamic polarizabilities at real frequencies 
When a system in state y50 is perturbed by the dipole moment operator 

(32) V(eiwt+ ,-iwt) 
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the polarizability .(U) at real positive frequency w can be defined as 

1 
.(U) = c ( + ) ( $ o ,  V $ n ) ( # n ,  ~ $ 0 ) .  (33) 

n#O E , - E E g + O  E,-Eo-W 

If +* are the solutions for @ *  of the equations 

(h-E0+ w ) @ +  = ( U -  V)?,bo (34) 
then we may sum the series (33) and obtain 

where 
.(U) = .+(w)+.-(w) 

. * (U)  = J 4 * ( P - V ) $ o d r .  

The  functions +* are closely related to the first-order corrections to $o (see (48)-(SO) 
below). It is convenient to introduce the term U into (34), for since 

follows. Thus equation (34) can be regarded as being on Do, the domain of functions 
orthogonal to If el is the first excited energy of h, then h-e1 is a positive-definite, 
self-adjoint operator on Do,  and so for some T we can write 

h-el = T'T (39) 
(Mikhlin 1964). It should be noted that the term U is redundant in (36), since 4' E Do. 

We complete the identification of equations (34) and ( 7 )  by setting 

Then provided that 

the basic theory of 4 2 leads to complementary upper and lower bounds for 

S(+*) = -&.*(w). (43) 
Since w is non-negative, we always get bounds for & x + ( w ) .  But there will only be un- 
conditional bounds of this nature for i a - ( w ) ,  and hence for the polarizability .(U) itself, 
if 

so that Q is positive. The final result is 
E 1 - E o  > w (4-4) 

-2G+(@I+) -2G-(@1-) < .(U) < -2Jc( TO,+) -2J-(  T@z-)  (45 1 where 

2G*(@) = 1 ( @ ( h - ~ ~ ~ ~ ) @ - 2 @ ( 8 - V ) ~ ~ } d r  (46) 
and 

2J*(T@) = 2G*(@) -(cl  -eo * U)- '  1 (( P- V)?,b,-(h-~~ w)@}' dr .  (47) 
The term 7 is redundant in (46) since @ E Do. 

Each functional can be individually optimized with respect to the choice of @, Also 
the closeness of the pairs (G+, J + )  and (G-, J - )  measures the accuracy of @ *  as approxima- 
tions to the solutions +* of (34) when the same (Dk is used in each pair. The first-order 
correction to the wave function #o exp( -ieot) induced by the perturbation (32) is in fact 

(48) + +) eiot + d - t  e - iwt  
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where 

(Hirschfelder et al. 1964), so that from (34) and (49) it follows that 
1 

5. Dynamic polarizabilities at imaginary frequencies 

polarizability a(io) at imaginary frequency w.  We can identify 
If w is replaced by iw in equations (32)-(36), we obtain corresponding expressions for the 

(h-Eo+iw)@+ = (P- V)$, (51) 

= Y+F (again on Do) (52) 

q - e 0  = a (53) 
w = b  (54) 

with equation (11) if we take 

( U -  V>$O = g 
@ +  = 0, 0- = a * .  

Y(8) = -${cx+(iw)+x-(iw)} = -&(iw) 
Then from (19) 

for which we obtain complementary upper and lower bounds irrespectively of the value of w .  
Specifically we have 

where 
- 4  3 < a(iw) < -4f1  or -4211 ( 5 8 )  

(59) 2 3 = [ {@l*(h-~o)@l - (al* + P- V)$o) dr  
and 

2y1 = 2 6 - ( E 1 - E 0 ) - l  

x /{(P- V)$o - (h-e0  - iw)Oz*c)(( 17- V)g0 - (h-eO + io)@,) d r  (60) 
or 

2y,, = 2 3 - { ( E 1 - E 0 ) 2 + w 2 } - 1  

x [ { ( U -  V)~o-(h-Eo- iw)@z*}(h-EO){(V-  V)$,-(h-EO+iw)@,}dr. (61) 

We expect f I  to be more suitable for low frequencies and f I I  for high frequencies. 
can be omitted from (61) at the expense of 

worsening fI1.  (If this is done then the restriction Qz E Do can also be dropped.) This 
weaker result comes directly from the theory of $ 3  if we set a = 0. 

Should be unknown, the factor (e1 

Relations (13) and (14) become 
@ = (h-Eo-iw)O (62) 

@* = ( h - ~ ~ + i w ) O .  (63) 

These form a constraint on the trial functions Q1 and a,,, which if not chosen via a trial 0, 
must necessarily satisfy 

U ( @ + + * )  = i(h-EO)(@-@*). (64) 
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6 .  Illustrative results for the hydrogen atom 

ground-state hydrogen atom perturbed by an electric field in the x direction, so that 
T o  illustrate the foregoing theory, we suppose that equations (34) and (51) refer to a 

1 
(65) 

v =  -x, v = o .  (66) 

+(O) = (1 ++Y)Z$O? (ED01 (67) 

h =  -.Lv2--, $, 0 -  -T-L'2e-r, eo = -+, e, = -4 
2 r 

and 

When w = 0, the solution of either equation is 

but when w # 0 it is not possible to find a simple form for the exact solutions. At best 
one can derive complicated expressions for the Laplace transforms of the solutions (cf. 
Karplus and Kolker 1963)) which in turn lead to unwieldy infinite summations for the 
dynamic polarizabilities. Thus simple variational solutions are of some interest. 
6.1, Real  frequencies, w < # 

We see from (44) and (65) that the complementary bounds (45) hold for .(U) if 

$ > w ( > O )  
and so we take as trial functions 

(Dj* = A,*+(O) j = 1 ,2 .  

Choosing the factors A,* to optimize the respective bounds, we obtain the results 

AI' = (15+&J)-1, A,' = ( l&$w)- l  (70) 

-2G' = i (1  -k+$w)-' (71) 
-2J' = &{24(3 * 8 ~ ) - ' +  5(2 t 3 ~ ) - ' }  (72) 

(73) 

(74) 

Q(1 - ( % w ) ~ } - ~  < .(U) < ${36(9-64w2)-1+5(4-9w2)-1}. 

4.77 < ~ ( 0 . 1 )  < 4-79 and 5-83 < ~ ( 0 . 2 )  < 5.97. 

Examples of (73) are 

For sufficiently small w ,  the bounds in (73) differ by O(w4) .  

6.2.  Imaginary frequencies, small w 
The solution in Do of 

(h-€,)20(0) = (h--Eo)+(0) = Z$,o 
is 

Thus, from (62), we use the trial functions 
e(0) = &(2r2+ llr+22)x$o. 

( D j  = ( h - e 0 -  iw)Oj, j = 1 , 2  
in 3 and YI, where 

o j  = B,O(O), j = 1) 2 
and we expect to get reasonable results when w is small. Optimizing, we find that 

and 

(75)  

(76) 

(77) 

(78) 
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where 

The  bounds (81) and (82) differ by O(w4). 

optimum values 

and 

We expect yI to be better than fI1 for small w ,  although fI1 has the correct limit at 
w = 0 since the trial function is exact there. But as w increases, jII should improve at the 
expense of jI. This is borne out by the numerical values in table 1. 
6.3. Imaginary frequencies, large w 

The bounds (81) and (82) are still valid for large w ,  but we should not expect too much 
accuracy as they are based on trial functions which are exact at zero w.  We note that, for 

The  upper bound -4y11 can also be evaluated using a trial function B30(0), giving 

B3 = (1+’4yw2)-1 (83) 

(84) - 4 9  I1 - - -L(Sl( 8 8  1 + ?w2)-’ - 47( 1 + ’+&%2)-1}. 

large w ,  
1 

--4$11 N - 
w2 

-4y1 N constant, 

so that the behaviour of f I  is sadly astray. The  correct behaviour is 

since from (5 1) we have 

1 
E(iw) N - 

w2 

i 1 
# w  --z$o, #* - - X $ o  

0 w 

which yields (86), using (36) and (56). Thus jII is still quite good for large w .  
Guided by (87), we hope that the simple trial functions 

o j  = CjX$,, j = 1,2 

c 1 -  - - 4 % ’  = ( w ” f ) - 1  

will give a better ’3 and yII for large w. For $9 we get the optimum values 

but for ZI1 because of infinite integrals we need to take 

C,  = 0 
giving the optimum 

- 

From table 2 we see that %’ is better than g when w 2 2, but yII’ is no improvement on 
ZI1. These latter bounds are indeed very close to one another. 

The  closeness of complementary trial solutions of the various first-order corrections to 
the wave equation is measured by the difference in the parameter pairs (A,+, A,+), 
(Al-, .A2-), (Bl ,  B2), (Bl, B3) and (Cl, C2), These differences are an order of magnitude 
greater than the difference in the corresponding complementary bounds, in keeping with 
the stationary principles. If more accurate solutions are desired, then more than one 
variable parameter is necessary. 

7. Discussion 
The stationary property of the G-type functionals is well known; for real frequencies see 

Karplus and Kolker (1963), Musulin and Epstein (1964), Chan and Dalgarno (1965), 
and for imaginary frequencies Mavroyannis and Stephen (1962) and Epstein (1968). I t  
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has also been realized that these functionals provide bounds in certain cases. However, the 
complementary J-type functionals would seem to be new, and the possibility of testing 
approximate first-order wave functions with pairs of complementary bounds is an additional 
feature. 

Recent work by Goscinski (1968) shows how upper and lower bounds can be obtained 
for x(iw) by operator analysis. He finds bounds in terms of the sums 

&-I = 2 2 ( E n - E o ) k ( $ O ,  V$n) ($n ,  V$O), - 5  G k G 3 (92) 
n#O 

which are often available from experimental data. One can derive results like Goscinski’s 
by taking as trial functions in 9 and f optimized linear combinations of 

for various values of m. Gordon (1968) has also employed the sums (92) to give bounds for 
x(iw) using Gaussian integration techniques. 

An upper bound for cl(iw) is given by Epstein (1968) in terms of an upper bound for 
~ ( 0 ) .  The writer is grateful to this author for stimulating his interest in dynamic polarizabi- 
lities. 
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